Course Code: BCA601	Course Title: Androi	d Programming
Total Contact Hours: 48 hrs.	Total Credits: 04	Total Marks: 100
(60 Lectures)		
Teaching	Scheme: Theory- 05 Lect./	Week

Course Objectives:

The objective of this course is to understand the Android Operating System and develop applications using Google's Android open-source platform.

UNIT NO.	DESCRIPTION	No. of LECTURES
UNIT 1	1. Introduction to Android	06
	1.1. Overview	
	1.2. History	
	1.3. Features of Android	
	1.4. Architecture of Android	
	Overview of Stack	
	Linux Kernel	
	Native Libraries	
	Android Runtime	
	Application Framework	
	Applications	
	1.5. SDK Overview	
	• Platforms	
	• Tools – (JDK, SDK, Eclipse/Android Studio, ADT,	
	AVD, Android Emulator)	
	• Versions	
	1.6. Creating your first Android Application	00
UNIT Z	2. Activities, Fragments and Intents	09
	2.1. Introduction to Activities	
	2.2. Activity Effective 2.3. Introduction to Intente	
	2.5. Infoduction to intents 2.4 Linking Activities using Intents	
	2.4. Emitting Activities using intents 2.5. Calling built in applications using Intents	
	2.5. Caring built-in applications using intents	
	2.0. Infoduction to Pragments 2.7. Adding Fragments Dynamically	
	2.8. Lifecycle of Fragment	
	2.0. Interaction between Fragments	
		10
UNIT 3	3. Android User Interface	10
	5.1. Understanding the components of a screen	
	• views and vieworoups	
	• LinearLayout	
	 AdsoluteLayout 	

	TableLayout	
	RelativeLayout	
	• FrameLayout	
	ScrollLayout	
	ScrollView	
	3.2. Adapting to Display Orientation	
	Anchoring Views	
	• Resizing and Repositioning	
	3.3. Managing Changes to Screen Orientation	
	• Persisting State Information during Changes in	
	Configuration	
	Detecting Orientation Changes	
	• Controlling the Orientation of the Activity	
	3.4. Utilizing Action Bar	
	• Adding Action Items to the Action Bar	
	• Customizing the Action Items and Application Icon	
UNIT 4	4. Designing Your User Interface with Views	10
	4.1. Using Basic Views	
	• TextView	
	• Button, ImageButton, EditText, CheckBox	
	• ToggleButton, RadioButton, and RadioGroup Views	
	ProgressBar View	
	AutoCompleteTextView View	
	4.2. Using Picker Views	
	TimePicker View	
	DatePicker View	
	4.3. Using List Views to Display Long Lists	
	ListView View	
	Using the Spinner View	
	4.4. Understanding Specialized Fragments	
	Using a ListFragment	
	 Using a DialogFragment 	
	Using a PreferenceFragment	
UNIT 5	5. Displaying Pictures and Menus	05
	5.1. Using Image Views to Display Pictures	
	• Gallery and Image View views	
	• Image Switcher	
	• Grid View	
	5.2. Using Menus with Views	
	• Creating the helper methods	
	Options Menu	
	• Context Menu	
UNIT 6	6. Databases – SQLite	06
	6.1. Introduction to SQLite	
	6.2. SQLiteOpenHelper and SQLiteDatabase	
	6.3. Creating, opening and closing database	
	6.4. Working with cursors, Insert, Update, Delete	
	6.5. Building and executing queries	

UNIT 7	 7. Messaging and E-mail 7.1. SMS Messaging Sending SMS Messages Programmatically Getting Feedback after Sending a Message Sending SMS Messages Using Intent Receiving SMS Messages Caveats and Warnings 7.2. Sending E-mail 	06
UNIT 8	 8. Location-Based Services and Google Map 8.1. Display Google Maps Creating the project Obtaining the Maps API Key Displaying the Map Displaying the Zoom Control Changing Views Navigating to a specific location Adding Markers Getting the location that was touched Geocoding and Reverse Geocoding 8.2. Getting Location Data 8.3. Monitoring a Location 	08

- Reference Books:1. Beginning Android4 Application Development, By Wei-Meng Lee WILEY India Edition WROX Publication
- 2. Professional Android 4 Application Development, By Reto Meier WROX Publication
- 3. The official site for Android developers https://developer.android.com

Course Code: BCA602

Course Title: Python Programming

Total Contact Hours: 48 hrs. (60 Lectures)

Total Credits: 04

Total Marks: 100

Teaching Scheme: Theory- 05 Lect./ Week

Course Objectives:

- To introduce various concepts of programming to the students using Python.
- Students should be able to apply the problem solving skills using Python

Unit No.	Contents	No. of Lectures
Unit 1	Introduction to Python Scripting	04
	Why Scripting is Useful in Computational Science	
	Classification of Programming Languages	
	Productive Pairs of Programming Languages	
	Gluing Existing Applications	
	Scripting Yields Shorter Code, Efficiency	
	• Type-Specification (Declaration) of Variables	
	Flexible Function Interfaces	
	Interactive Computing	
	Creating Code at Run Time	
	Nested Heterogeneous Data Structures	
	GUI Programming	
	Mixed Language Programming	
	• When to Choose a Dynamically Typed Language	
	• Why Python? Script or Program?	
	Application of Python	
	• Concept (immutable)	
Unit 2	Basic Python	06
	• Python identifiers and reserved words	
	• Lines and indentation, multi-line statements	
	• Comments	
	• Input/output with print and input functions,	
	• Command line arguments and processing command line arguments	
	• Standard data types - basic, none, Boolean (true & False), numbers	
	Python strings	
	Data type conversion	
	• Python basic operators (Arithmetic, comparison,	
	assignment, bitwise logical)	
	• Python membership operators (in & not in)	
	• Python identity operators (is & is not)	
	Operator precedence	
	Control Statements, Python loops, Iterating by	

	subsequence index, loop control statements (break,	
	continue, pass)	
	• Mathematical functions and constants (import math),	
	Random number functions	
Unit 3	Python strings	06
	Concept, escape characters	
	String special operations	
	String formatting operator	
	• Single quotes, Double quotes, Triple quotes	
	• Raw String, Unicode strings, Built-in String methods.	
	• Python Lists - concept, creating and accessing elements.	
	updating & deleting lists, basic list operations, reverse	
	 Indexing slicing and Matrices 	
	 built-in List functions 	
	 Functional programming tools - filter() man() and reduce() 	
	 Functional programming tools - Inter(), map(), and reduce() Using Lists as stacks and Ousses List comprehensions 	
TT 14 4	• Using Lists as stacks and Queues, List comprehensions	0.6
Unit 4	Python tuples and sets	06
	• Creating & deleting tuples	
	• Accessing values in a tuple	
	• Updating tuples, delete tuple elements	
	• Basic tuple operations	
	 Indexing, slicing and Matrices, built- in tuple functions. Sate Concept executions 	
Unit 5	• Sets - Concept, operations.	04
Unit 5	• Concept (mutable)	V 4
	 Creating and accessing values in a dictionary 	
	 Undating dictionary delate dictionary elements 	
	 Opdating dictionary, delete dictionary elements Properties of dictionary keys 	
	 built-in dictionary functions and methods 	
Unit 6	Functions	08
Cint 0	 Defining a function (def) 	00
	 Calling a function 	
	 Function arguments - Pass by value. Keyword Arguments. 	
	default arguments	
	• Scope of variable - basic rules	
	Documentation Strings	
	Variable Number of Arguments	
	Call by Reference	
	• Order of arguments (positional, extra & keyword)	
	Anonymous functions	
	Recursion	
	Treatment of Input and Output Arguments	
	Unpacking argument lists	
	Lambda forms	
	Function Objects	
	J	

	Generators (functions and expressions) and iterators, list comprehensions	
Unit 7	 Files and Directories Creating files Operations on files (open, close, read, write) File object attributes, file positions, Listing Files in a Directory Testing File Types Removing Files and Directories Copying and Renaming Files Splitting Pathnames Creating and Maxing to Directories 	06
	 Creating and Woving to Directories Traversing Directory Trees Illustrative programs: word count, copy file 	
Unit 8	 Python Classes / Objects Object oriented programming and classes in Python - creating classes, instance objects, accessing members Data hiding (the double underscore prefix) Built-in class attributes Garbage collection : the constructor Overloading methods and operators Inheritance - implementing a subclass, overriding methods Recursive calls to methods Class variables, class methods, and static methods 	08
Unit 9	 Python Exceptions Exception handling : assert statement 	02
	 Except clause - with no exceptions and multiple exceptions Try - finally, raising exceptions, user-defined exceptions. 	

Reference Books:

- 1. Introducing Python- Modern Computing in Simple Packages Bill Lubanovic, O'Reilly Publication
- 2. Beginning Python: From Novice to Professional, Magnus Lie Hetland, Apress
- 3. Practical Programming: An Introduction to Computer Science Using Python 3, Paul Gries, et al., Pragmatic Bookshelf, 2/E 2014
- 4. Introduction to Computer Science Using Python- Charles Dierbach, Wiley Publication Learning with Python ", Green Tea Press, 2002
- 5. E-Books : python_tutorial. pdf, python_book_01.pdf
- 6. Beginning Programming with Python for Dummies Paperback 2015 by John Paul Mueller
- 7. A Beginner's Python Tutorial: http://en.wikibooks.org/wiki/A Beginner%27s Python Tutorial.

Course Code: BCA603

Course Title: Recent Trends in IT (Internet of Things)

Total Contact Hours: 48 hrs. (60 Lectures) Total Credits: 04 Total Marks: 100

Teaching Scheme: Theory- 05 Lect./ Week

Pre-Requisite: Basic understanding of electronics and microprocessors. Course Objectives:

- 1. The Internet of Things (IoT) is aimed at enabling the interconnection and integration of the physical world and the cyber space.
- 2. To learn about SoC architectures, programming Raspberry Pi and implementation of internet of things and protocols.

Expected Learning Outcomes:

- 1. Enable learners to understand System On Chip Architectures.
- 2. Introduction and preparing Raspberry Pi with hardware and installation.
- 3. Learn physical interfaces and electronics of Raspberry Pi and program them using practical's
- 4. Learn how to design IoT based prototypes.

Unit No.	Contents	No. of Lecctures
Unit 1	System on Chip (SoC) and Internet of Things (IoT) Overview	20
	- System on Chip: What is System on chip? Structure of System on Chip.	
	- SoC products: Field Programmable Gate Array (FPGA),	
	General	
	Purpose Graphics Processing Units (GPU), Accelerated	
	Processing Unit (APU), Compute Units.	
	-The IoT paradigm giving overview of IoT supported Hardware	
	platforms such as: Raspberry pi, SoC on ARM 8 Processors,	
	Arduino and Intel Galileo boards.	
	-Network Fundamentals: Wired Networking(Router, Switches),	
	Wireless Networking(Access Points)	
	-Introduction to Raspberry Pi: Introduction to Raspberry Pi,	
	Raspberry Pi Hardware, Preparing your raspberry Pi.	
	-Raspberry Pi Boot: Learn how this small SoC boots without	
	BIOS. Configuring boot sequences and hardware.	
	-Introduction to IoT: What is IoT? IoT examples, Simple IoT	
	LED Program.	
	-IoT and Protocols	
	-IoT Security: HTTP, UPnp, CoAP, MQTT, XMPP.	
	-IoT Service as a Platform: Clayster, Thinger.io, SenseIoT,	
	carriots and Node RED.	
	-IoT Security and Interoperability: Risks, Modes of Attacks,	
	Tools for Security and Interoperability.	

Unit 2	Programming Raspberry Pi	15
	Raspberry Pi and Linux: About Raspbian, Linux Commands,	
	Configuring Raspberry Pi with Linux Commands	
	Programing interfaces: Introduction to Node.js, Python.	
	Raspberry Pi Interfaces: UART, GPIO, I2C, SPI	
	Useful Implementations: Cross Compilation, Pulse Width	
	Modulation, SPI for Camera.	
Unit 3	Case Study & advanced IoT Applications:	15
	IoT applications in home, infrastructures, buildings, security,	
	Industries, Home appliances, other IoT electronic equipments.	
	Use of Big Data and Visualization in IoT, Industry 4.0 concepts.	
	Sensors and sensor Node and interfacing using any Embedded	
	target boards (Raspberry Pi / Intel Galileo/ARM Cortex/ Arduino)	
Unit 4	Internet of Things Privacy, Security and Governance	10
	Introduction, Overview of Governance, Privacy and Security	
	Issues, Contribution from FP7 Projects, Security, Privacy and	
	Trust in IoT-Data-Platforms for Smart Cities, First Steps Towards	
	a Secure Platform, Smartie Approach. Data Aggregation for the	
	IoT in Smart Cities, Security	

TEXT BOOKS:

- 1. 6LoWPAN: The Wireless Embedded Internet, Zach Shelby, Carsten Bormann, Wiley
- 2. Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers
- 3. Interconnecting Smart Objects with IP: The Next Internet, Jean-Philippe Vasseur, Adam Dunkels, Morgan Kuffmann
- 4. Internet of Things : A hands- on Approach by Arshdeep Bahga, Vijay Madisetti
- 5. IoT Programming: A Simple and Fast Way of Learning IOT by David Etter

REFERENCES:

- 1. The Internet of Things: From RFID to the Next-Generation Pervasive Networked Lu Yan, Yan Zhang, Laurence T. Yang, Huansheng Ning
- 2. Internet of Things (A Hands-on-Approach), Vijay Madisetti, Arshdeep Bahga
- 3. Designing the Internet of Things, Adrian McEwen (Author), Hakim Cassimally
- 4. "Mobile Computing," Tata McGraw Hill, Asoke K Talukder and Roopa R Yavagal, 2010.
- 5. Computer Networks; By: Tanenbaum, Andrew S; Pearson Education Pte. Ltd., Delhi, 4th Edition
- 6. Data and Computer Communications; By: Stallings, William; Pearson Education Pte. Ltd., Delhi, 6th Edition
- 7. "Fundamentals of Mobile and Pervasive Computing," F. Adelstein and S.K.S. Gupta, McGraw Hill, 2009.
- 8. Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010

	Third Year B	B.C.A. (Under Science) Ser	mester V or VI	
Course Co	de: BCA-604		Course Title: D	Oata Analytics
Total Cont	tact Hours: 48 hrs.	Total Credits: 04	Total Mar	ks: 100
(60 Lectur	es)			
	Teachi	ing Scheme: Theory- 05 Lec	t./ Week	
Course Ob	ojectives:			
	1. Able to apply fun	damental algorithmic ideas to	process data.	
	2. Learn to apply l	hypotheses and data into action	onable Predictions.	
Unit No.		Contents		No. of Lectures
Unit 1	Introduction to data	a Science		
	 Basics of D 	ata		
	• What is Dat	a Science?		
	• Data scienc	e process		
	• Stages in da	ta science project		
	Basics of Data Ana	lytics		
	Types of Analytics	- Descriptive, Predictive, Pre	escriptive	
	Statistical Inference	2	•	10
	 Populations 	and samples		
	 Statistical n 	nodeling,		
	o Probability			
	 Distribution 	1		
	• Correlation			
	o Regression			
Unit 2	Introduction to Machine L	earning		
	Basics of Machine	Leaning		
	Supervised Machin	e Learning		
	• K-1	Nearest-Neighbors,		
	■ Naïv	ve Bayes		
	■ Dec	ision tree		25
	• Sup	port Vector Machines		25
	Unsupervised Macl	hine Learning		
	• Clus	ster analysis		
	• K m	leans		
	- Asso			
	Description Angles	• Apriori algorithms		
	Regression Analysi	S Decreasion		
	- Line	lineer Degression		
Unit 3	Data Analytics with Python	n Programming		15
Onit 5	\square Numpy	n i Togranning		15
	\circ Arrays			
	\circ Array index	ing		
	o Datatypes	9		
	• Array math			
	 Broadcastin 	g		
		~		

	□ SciPy	
	 Image operations Distance between points 	
	Data analysis and manipulation using Pandas package	
	 Importing Data , Creating A DataFrame, DataFrame Methods, Indexing DataFrames, Boolean Indexing Indexing Using Labels , Multi-Indexing Merge DataFrames Sorting DataFrames Apply Function Pivot Table, Crosstab Iterating over rows of a dataframe 	
Unit 4	Data Visualization • Basic principles, • Ideas and tools for data visualization • Graph Visualization, • Data Summaries, • Model Checking & Comparison • Purpose of visualization • Multidimensional visualization • Tree visualization • Graph visualization • Graph visualization • Understanding analytics output and their usage • Scikit package • matplotlib library • Plotting • Subplots • Images	10

Reference Books:

- 1. The elements of statistical learning. Hastie, Trevor, et al., Vol. 2. No. 1. New York: springer, 2009.
- 2. Applied statistics and probability for engineers. Montgomery, Douglas C., and George C. Runger. John Wiley & Sons,2010
- 3. Scaling up Machine Learning to White "Hadoop: The Definitive Guide" Third Edition, Bekkerman et al., O"reilly Media, 2012.
- 4. "Mining of Massive Datasets", Anand Rajaraman and Jeffrey David Ullman, Cambridge University Press, 2012.
- 5. Developing Analytic Talent: Becoming a Data Scientist, Vincent Granville, wiley, 2014.
- 6. Introduction to Data Science, Jeffrey Stanton & Robert De Graaf, Version 2.0, 2013.
- 7. "Practical Data Science with R", Nina Zumel, John Mount, Manning Publications, 2014.
- 8. "Mining of Massive Datasets", Jure Leskovec, Anand Rajaraman, Jeffrey D.Ullman, Cambridge

University Press, 2014.

- 9. "Beginning R The Statistical Programming Language", Mark Gardener, John Wiley & Sons, Inc., 2012.
- 10. "An Introduction to R", W. N. Venables, D. M. Smith and the R Core Team, 2013.
- 11. "Practical Data Science Cookbook", Tony Ojeda, Sean Patrick Murphy, Benjamin Beng fort, Abhijit Dasgupta, Packt Publishing Ltd., 2014.
- 12. "Visualize This: The Flowing Data Guide to Design, Visualization, and Statistics", Nathan Yau, Wiley, 2011.
- 13. "Professional Hadoop Solutions", Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015.
- 14. http://www.johndcook.com/R_language_for_programmers.html
- 15. http://bigdatauniversity.com/
- 16. http://home.ubalt.edu/ntsbarsh/stat-data/topics.htm#rintroduction

BCA – 605 Course Course I **Title: Android Programming Lab**

Total Contact Hours: 48 hrs.

Total Credits: 04

Total Marks: 100

Note that these are only sample assignments. Teachers may conduct practicals by preparing similar types of examples

Sample Assignments on Android Programming

Assignment 1: Introduction to Android

1. Install Android Studio and build simple Hello World application.

Assignment 2: Activities, Fragments and Intents

1. Design Login Activity shown below.

Email	
Password	
LOGIN	
Not a member? Sign up now.	

2. Create application to display details of selected list item on second activity (Use Fragmentation).

3. Create first activity to accept information like first name, last name, date of birth, email-id and display all information on second activity when user click on submit button.

Assignment 3: Android User Interface and Event Handling

1. Create the simple calculator shown below. Also, perform appropriate operations.

- 2. Create application to calculate GPA.
- 3. Create chat application.

Assignment 4: Designing Your User Interface with Views

- 1. Create a custom "Contact" layout to hold multiple pieces of information, including: Photo, Name, Contact Number, E-mail id.
- 2. Create application to demonstrate date and time picker.

Assignment 5: Displaying Pictures and Menus

- 1. Construct an app that toggles a light bulb on and off when the user clicks on toggle button.
- 2. Create application as shown below.
- 3. Create gallery application to display all images date wise (Use Grid View).

Assignment 6: Databases – SQLite

- 1. Create login activity (referAssignment 2 Example 1). If Email and password matches with database display "login successful" message else display error message.
- 2. Construct a simple notes list that lets the user add new notes but not edit them. Demonstrates the basics of ListActivity.Use a SQLite database to store the notes.
- 3. Create tables: Course (id, name, instructor) and Student (id, name). Course and Student have a many to many relationship. Create a GUI based system for performing the following operations on the tables:
 - 1. Course: Add Course, View All students of a specific course
 - 2. Student: Add Student, Delete Student, View All students, Search student

Assignment 7: Messaging and E-mail

- 1. Create application to send and receive messages.
- 2. Create application to send email with validation.
- 3. Create application to send email with attachment.

Assignment 8: Location-Based Services and Google Map

- 1. Write a program to find the current location of an Android device and display details of the place like Street name, city with Geocoding.
- 2. Write a program to track android device usingGoogle Maps.
- 3. Write a program todraw path along a route in Google map.

Course BCA606

Title: Python Lab Cource II

Total Contact Hours: 48 hrs.

Total Credits: 04

Total Marks: 100

Python Assignments:

- 1. Create a program that asks the user to enter their name and their age. Print out a message addressed to them that tells them the year that they will turn 100 years old.
- 2. Write a program to check whether the number is even or odd, print out an appropriate message to the user.
- **3.** Write a program which will find all such numbers which are divisible by 7.
- 4. Write a program which can compute the factorial of a given numbers.
- 5. Write a program that prints out all the elements of the list that are less than 10.
- 6. Write a program that returns a list that contains only the elements that are common between the lists (without duplicates). Make sure your program works on two lists of different sizes.
- 7. Write a program which accepts a sequence of comma-separated numbers from console and generate a list and a tuple which contains every number. Given the input: 34,67,55,33,12,98

Then, the output should be:

['34', '67', '55', '33', '12', '98'] ('34', '67', '55', '33', '12', '98')

8. Make a two-player Rock-Paper-Scissors game. (*Hint: Ask for player plays (using input), compare them, print out a message of congratulations to the winner, and ask if the players want to start a new game*) Rules:

Rock beats scissors Scissors beats paper Paper beats rock

- 9. To determine whether the number is prime or not.
- **10.** To check whether a number is palindrome or not. (using recursion and without recursion).
- **11.** Write a program (function!) that takes a list and returns a new list that contains all the elements of the first list minus all the duplicates.Write two different functions to do this one using a loop and constructing a list, and another using sets.
- **12.** Write a program that asks the user how many Fibonnaci numbers to generate and then generates them.
- 13. Write a program (using functions!) that asks the user for a long string containing multiple words. Print back to the user the same string, except with the words in backwards order. E.g " I am tybca student" is :"student tybca am I"
- 14. Write a password generator in Python. Be creative with how you generate passwords strong passwords have a mix of lowercase letters, uppercase letters, numbers, and symbols. The passwords should be random, generating a new password every time the user asks for a new password.
- **15.** Write a program to implement binary search to search the given element using function.
- **16.** Given a .txt file that has a list of a bunch of names, count how many of each name there are in the file, and print out the results to the screen.

- **17.** Implement a function that takes as input three variables, and returns the largest of the three.(do not use max function)
- **18.** Create a dictionary (in your file) of names and birthdays. When you run your program it should ask the user to enter a name, and return the birthday of that person back to them.
- **19.** Write a program that takes a list of numbers (for example, a = [5, 10, 15, 20, 25]) and makes a new list of only the first and last elements of the given list.
- **20.** Write a program that accepts sequence of lines as input and prints the lines after making all characters in the sentence capitalized.
- **21.** Write a program that accepts a sentence and calculate the number of letters and digits.
- **22.** Write a program that accepts a sentence and calculate the number of upper case letters and lower case letters.

String:

A string is a sequence of characters. The string is a sequence of Unicode character in Python. Unicode was introduced to include every character in all languages and bring uniformity in encoding.

Strings can be created by enclosing characters inside a single quote or double quotes. Even triple quotes can be used in Python but generally used to represent multiline strings and docstrings.

All of the following are equivalent my_string = 'Hello' print(my_string) my_string = "Hello" print(my_string) my_string = "'Hello"' print(my_string) # triple quotes string can extend multiple lines my_string = """Hello, welcome to the world of Python""" print(my_string)

The output of *stringm.py* will be:

Hello Hello Hello, welcome to the world of Python

To access characters in a string:

We can access individual characters using indexing and a range of characters using slicing. Index starts from 0. Trying to access a character out of index range will raise an IndexError. The index must be an integer. We can't use float or other types, this will result into TypeError. Python allows negative indexing for its sequences. The index of -1 refers to the last item, -2 to the second last item and so on. We can access a range of items in a string by using the slicing operator (colon).

str = 'programing'
print('str = ', str)

#first character
print('str[0] = ', str[0])
#last character
print('str[-1] = ', str[-1])
#slicing 2nd to 5th character
print('str[1:5] = ', str[1:5])
#slicing 6th to 2nd last character
print('str[5:-2] = ', str[5:-2])
Update string:
The existing string can be update by (re)assigning a variable to another string. The new value
can be related to its previous value or to a completely different string altogether. For example
-

var1 = 'Hello World!'
print "Updated String :- ", var1[:6] + 'Python'

output:

Updated String :- Hello Python

Python includes the following built-in methods to manipulate strings -

Sr.No.	Methods with Description
1	capitalize() Capitalizes first letter of string
2	center(width, fillchar) Returns a space-padded string with the original string centered to a total of width columns.
3	<pre>count(str, beg= 0,end=len(string)) Counts how many times str occurs in string or in a substring of string if starting index beg and ending index end are given.</pre>
4	decode(encoding='UTF-8',errors='strict') Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding.
5	encode(encoding='UTF-8',errors='strict') Returns encoded string version of string; on error, default is to raise a ValueError unless errors is given with 'ignore' or 'replace'.
6	endswith(suffix, beg=0, end=len(string)) Determines if string or a substring of string (if starting index beg and ending index end are given) ends with suffix; returns true if so and false otherwise.
7	expandtabs(tabsize=8) Expands tabs in string to multiple spaces; defaults to 8 spaces per tab if tabsize not provided.
8	<pre>find(str, beg=0 end=len(string)) Determine if str occurs in string or in a substring of string if starting index beg</pre>

	and ending index end are given returns index if found and -1 otherwise.
9	<pre>index(str, beg=0, end=len(string)) Same as find(), but raises an exception if str not found.</pre>
10	isalnum () Returns true if string has at least 1 character and all characters are alphanumeric and false otherwise.
11	isalpha () Returns true if string has at least 1 character and all characters are alphabetic and false otherwise.
12	isdigit() Returns true if string contains only digits and false otherwise.
13	islower () Returns true if string has at least 1 cased character and all cased characters are in lowercase and false otherwise.
14	isnumeric () Returns true if a unicode string contains only numeric characters and false otherwise.
15	isspace() Returns true if string contains only whitespace characters and false otherwise.
16	istitle() Returns true if string is properly "titlecased" and false otherwise.
17	isupper () Returns true if string has at least one cased character and all cased characters are in uppercase and false otherwise.
18	join(seq) Merges (concatenates) the string representations of elements in sequence seq into a string, with separator string.
19	len(string) Returns the length of the string
20	ljust (width [, fillchar]) Returns a space-padded string with the original string left-justified to a total of width columns.
21	lower() Converts all uppercase letters in string to lowercase.
22	lstrip() Removes all leading whitespace in string.

23	maketrans() Returns a translation table to be used in translate function.
24	max(str) Returns the max alphabetical character from the string str.
25	min(str) Returns the min alphabetical character from the string str.
26	replace(old, new [, max]) Replaces all occurrences of old in string with new or at most max occurrences if max given.
27	rfind(str, beg=0,end=len(string)) Same as find(), but search backwards in string.
28	<pre>rindex(str, beg=0, end=len(string)) Same as index(), but search backwards in string.</pre>
29	rjust (width,[, fillchar]) Returns a space-padded string with the original string right-justified to a total of width columns.
30	rstrip() Removes all trailing whitespace of string.
31	<pre>split(str="", num=string.count(str)) Splits string according to delimiter str (space if not provided) and returns list of substrings; split into at most num substrings if given.</pre>
32	splitlines(num=string.count('\n')) Splits string at all (or num) NEWLINEs and returns a list of each line with NEWLINEs removed.
33	startswith(str, beg=0,end=len(string)) Determines if string or a substring of string (if starting index beg and ending index end are given) starts with substring str; returns true if so and false otherwise.
34	<pre>strip([chars]) Performs both lstrip() and rstrip() on string.</pre>
35	<pre>swapcase() Inverts case for all letters in string.</pre>
36	title () Returns "titlecased" version of string, that is, all words begin with uppercase and the rest are lowercase.
37	translate(table, deletechars='''')

	Translates string according to translation table str(256 chars), removing those in the del string.
38	upper () Converts lowercase letters in string to uppercase.
39	zfill (width) Returns original string leftpadded with zeros to a total of width characters; intended for numbers, zfill() retains any sign given (less one zero).
40	isdecimal() Returns true if a unicode string contains only decimal characters and false otherwise.

- 1. Write a Python function to calculate the factorial of a number (a non-negative integer). The function accepts the number as an argument.
- 2. Write a Python program to converting an Integer to a string in any base.
- 3. Write a Python program of recursion list sum.
- 4. Write a Python program to solve the Fibonacci sequence using recursion.
- 5. Write a Python program to get the sum of a non-negative integer.
- 6. Write a Python program to calculate the value of 'a' to the power 'b'
- 7. Write a Python program to find the greatest common divisor (gcd) of two integers
- 8. Write a Python function that takes a list and returns a new list with unique elements of the first list.
- 9. Write a Python function to check whether a number is perfect or not
- 10. Write a Python program to read a file line by line store it into an array.
- 11. Write a Python program to count the number of lines in a text file.
- 12. Write a Python program to count the frequency of words in a file.
- 13. Write a Python program to copy the contents of a file to another file
- 14. Write a Python program to read a random line from a file
- 15. Write a Python class to implement pow(x, n).
- 16. Write a Python class to reverse a string word by word. Input string : 'hello .py' Expected Output : '.py hello'
- 17. Write a Python class named Rectangle constructed by a length and width and a method which will compute the area and perimeter of a rectangle. –
- 18. Write a Python class named Circle constructed by a radius and two methods which will compute the area and the perimeter of a circle

Course Code: BCA607 Course Title: Introduction to Green Computing

Total Contact Hours: 24 hrs. (30ectures)

Total Credits: 02 Tota

Total Marks: 50

Teaching Scheme: Theory- 05 Lect./ Week

Course Objectives:

- 1. Building more energy-efficient computing systems as well as building computing technology that increases energy-efficiency of other physical systems.
- 2. Investigate recent advances in the broad realm of green technologies to save energy and reduce the carbon footprint of modern computing and engineered systems.
- 3. A holistic coverage is given ranging from single device issues to algorithms for reducing power consumption of data centers, transportation systems, and smart buildings.

Unit No.	Contents	No. of Lecctures
Unit 1	1. Introduction to Green Computing	04
	Websites & statistics How bad the energy crisis really is?	
Unit 2	2. Reducing the IT footprint	10
	What really contributes to the footprint (from machine	
	manufacturing to	
	disposal)?	
	Saving energy on a single machine	
	Saving energy in networking and other components	
	Saving energy in clusters and data centers	
	Saving energy on data center cooling	
Unit 3	3. Computing technology for energy efficiency of other physical	10
	systems	
	Computing technology for greener transportation	
	Computing technology for smarter buildings	
	Carbon footprint calculators: what is my footprint?	
Unit 4	4. Major green initiatives	06
	Sustainable IT, Green Business, Smarter Plant.	

Reference Books:

- 1. Green Computing: Tools and Techniques for Saving Energy, Money, and Resources1st Edition by Bud E. Smith(CRC Press)
- 2. The Green Computing Book by Wu-Chun Feng (CRC Press)
- 3. Green it for sustainable business practice: An ISEB Foundation Guide by Mark G. O'Neill.